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Introduction

As indicated by a series of recent publications (Chen et al. 
2014b; Ding et al. 2014; Guo et al. 2014; Lin et al. 2014; 
Liu et al. 2014b; Zhong and Zhou 2014; Chou 2015), one 
of the most challenging problems in computational biology 
is how to formulate a biological sequence with a discrete 
model or vector, yet still considerably keep its sequence 
order information or grasp its core features. This is because 
almost all the existing algorithms can only handle vectors 
but not sequence samples (Chou 2015; Liu et al. 2015e).

For protein and peptide sequences, the formulation 
of pseudo-amino acid composition (Chou 2001, 2005) 
or Chou’s PseAAC (Lin and Lapointe 2013) and its web 
server generators (Shen and Chou 2008; Du et al. 2012, 

Abstract With the rapid growth of RNA sequences gener-
ated in the postgenomic age, it is highly desired to develop 
a flexible method that can generate various kinds of vectors 
to represent these sequences by focusing on their different 
features. This is because nearly all the existing machine-
learning methods, such as SVM (support vector machine) 
and KNN (k-nearest neighbor), can only handle vectors 
but not sequences. To meet the increasing demands and 
speed up the genome analyses, we have developed a new 
web server, called “representations of RNA sequences” 
(repRNA). Compared with the existing methods, repRNA 
is much more comprehensive, flexible and powerful, as 
reflected by the following facts: (1) it can generate 11 dif-
ferent modes of feature vectors for users to choose accord-
ing to their investigation purposes; (2) it allows users to 
select the features from 22 built-in physicochemical prop-
erties and even those defined by users’ own; (3) the result-
ant feature vectors and the secondary structures of the cor-
responding RNA sequences can be visualized. The repRNA 
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2014; Cao et al. 2013 ) are quite successful in this regard 
and widely used in nearly all the fields of computational 
proteomics [see, e.g., (Zhou et al. 2007; Nanni and Lumini 
2008; Georgiou et al. 2009; Esmaeili et al. 2010; Sahu and 
Panda 2010; Mohabatkar et al. 2011, 2013; Mohammad 
Beigi et al. 2011; Mei 2012; Chen and Li 2013; Georgiou 
et al. 2013; Liu et al. 2013, 2015a, f; Mondal and Pai 2014; 
Dehzangi et al. 2015; Khan et al. 2015; Kumar et al. 2015; 
Mandal et al. 2015; Liu et al. 2015f)] as well as a long list 
of papers cited in (Chou 2011; Du et al. 2014; Liu et al. 
2015h).

For DNA sequences, the kmers (Fletez-Brant et al. 2013) 
and gapped kmers (Ghandi et al. 2014) were successfully 
applied to predict regulatory sequences, achieving quite prom-
ising outcomes (Lee et al. 2011; Fletez-Brant et al. 2013; 
Ghandi et al. 2014). Meanwhile, an extension of Chou’s 
PseAAC called PseKNC or “pseudo K-tuple nucleotide com-
position” (Chen et al.) was developed and used to address 
some important problems in genome analysis [see, e.g., (Chen 
et al. 2013, 2014a; Guo et al. 2014; Qiu et al. 2014; Liu et al. 
2015g)], and the corresponding web server generators have 
been established as well (Chen et al. 2014b, 2015).

For RNA sequences, however, so far only the stand-
alone tool PseKNC-General (Chen et al. 2015) can be used 
to generate their feature vectors. But PseKNC-General is 
limited to certain types of features and a small number of 
physicochemical properties. Therefore, a comprehensive 
and flexible web server is urgently needed in this regard.

Here, we are to propose a web server called “Represen-
tations of RNA Sequences” (repRNA). To our best knowl-
edge, repRNA is so far the most comprehensive and flex-
ible web server, which can generate various modes of RNA 
feature vectors by means of the built-in physicochemical 
properties and even those defined by users themselves. 
Moreover, repRNA allows users to visualize the resultant 
feature vectors of the RNA sequences concerned as well 

as their computed secondary structures, so as to facilitate 
users to conduct in-depth genome analysis.

Method outline

The repRNA is a web server that can generate 11 differ-
ent feature vectors for RNA sequences (Table 1), which can 
be grouped into three categories: oligonucleotide or K-tuple 
nucleotide composition, pseudo-nucleotide composition, 
and structure composition. The first one is to generate the 
pseudo-components for the short-range or local sequence 
order information by counting the occurrence frequencies 
of the k nearest residues along the sequence. The second 
category is to incorporate the long-range or global sequence 
order information by counting the correlations of dinucleo-
tides along the sequence as shown in Fig. 1. The third cate-
gory is to incorporate the local and global sequence-pattern 
information via the computed secondary structures of RNA 
sequences, as illustrated in Fig. 2.

K‑tuple nucleotide composition

The first category is of oligonucleotide or K-tuple nucleotide 
composition that contains six modes (Zhang et al. 2011): (1) 
mononucleotide composition, (2) dinucleotide composition, 
(3) trinucleotide composition, (4) tetranucleotide composi-
tion, (5) pentanucleotide composition, and (6) hexanucleo-
tide composition. These features can capture the short-range 
or local sequence order information (Chen et al. 2014b), and 
have been extensively used to study the characteristics of 
RNA sequences (Zhang et al. 2011; Wei et al. 2014).

Suppose an RNA sequence R with L nucleic acid resi-
dues; i.e.,

(1)R = R1R2R3R4R5R6R7 . . .RL,

Table 1  List of 11 modes 
of feature vectors for RNA 
sequences that can be generated 
by repRNA

Category Feature vector modes

K-tuple nucleotide composition (Zhang et al. 2011)  Mononucleotide composition

 Dinucleotide composition

 Trinucleotide composition

 Tetranucleotide composition

 Pentanucleotide composition

 Hexanucleotide composition

Pseudo-nucleotide composition (Chen et al. 2015)  Parallel type of pseudo-dinucleotide composition 
(pPseDNC)

 Series type of pseudo-dinucleotide composition 
(sPseDNC)

 Structure composition (Liu et al. 2015c, d)  Triplet

 Pseudo-structure status composition (PseSSC)

 Pseudo-distance structure status pair composition 
(PseDPC)



475Mol Genet Genomics (2016) 291:473–481 

1 3

where

represents the nucleic acid residue at the sequence position 
i (= 1, 2, …, L). We can use K-tuple nucleotide composi-
tion (substring of RNA sequences containing k neighboring 
nucleotides) to represent an RNA sequence, then we have 
4k components in the corresponding vector D for the RNA 
sequence, that is,

(2)Ri ∈{A(adenine), C(cytosine), G(guanine), U(uracil)}

(3)
D = [ f

K - tuple
1 f

K - tuple
2 f

K - tuple
3 f

K - tuple
4 . . . f

K - tuple

4k
]
T,

where the symbol T is the transpose operator, f K - tuple rep-
resents the frequency of the K-tuple in R. For example, 
by using the dinucleotide composition (2-tuple), the RNA 
sequence is represented as:

where f 2 - tuple
1 = f (AA) is the normalized occurrence fre-

quency of AA in the RNA sequence, f 2 - tuple
2 = f (AC) is 

that of AC, f 2 - tuple
3 = f (AG) is that of AG, and so forth. 

(4)

D = [ f (AA) f (AC) f (AG) f (AU) . . . f (UU) ]T

= [ f
2 - tuple
1 f

2 - tuple
2 f

2 - tuple
3 f

2 - tuple
4 . . . f

2 - tuple
16

]T

Fig. 1  A schematic illustra-
tion to show the correlation of 
dinucleotides along an RNA 
sequence. a The first-tier cor-
relation reflects the sequence-
order mode between all the 
most contiguous dinucleotide. 
b The second-tier correlation 
reflects the sequence-order 
mode between all the second-
most contiguous dinucleotide. 
Θ(RiRi + 1, RjRj + 1) is a 
coupling factor between the 
dinucleotide (RiRi+1) and dinu-
cleotide (RjRj+1). The parameter 
λ is an integer, representing the 
counted rank (or tier) of the cor-
relation along an RNA sequence

Fig. 2  A schematic drawing to show the correlations of structure sta-
tuses along an RNA sequence. a The first-tier correlation reflects the 
structure-order mode between all the most contiguous nucleotides. b 
The second-tier correlation reflects the structure-order mode between 
all the second-most contiguous nucleotides. c The third-tier correla-

tion reflects the structure-order mode between all the third-most con-
tiguous nucleotides. Θ

(

�i,�j

)

 is a correlation function reflecting the 
structure-order information between the ith structure status and the 
jth structure status. λ is an integer, representing the counted rank (or 
tier) of the structural correlation along an RNA chain
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The symbol T is the transpose operator, f 2 - tuple
1 = f (AA) 

is the normalized occurrence frequency of AA in the RNA 
sequence, f 2 - tuple

2 = f (AC) is that of AC, f 2 - tuple
3 = f (AG) 

is that of AG, and so forth. The other five sequence compo-
sition modes can be generated by using different K-tuples 
with K = 1, 3, 4, 5, 6 for mononucleotide composition, tri-
nucleotide composition, tetranucleotide composition, pen-
tanucleotide composition, and hexanucleotide composition, 
respectively.

Pseudo‑ribonucleic acid composition

The secondary category is of pseudo-nucleotide com-
position that contains two modes (Chen et al. 2014b, 
2015): parallel type of pseudo-dinucleotide composi-
tion (pPseDNC), and series type of pseudo-dinucle-
otide composition (sPseDNC). See refs. (Chou 2005, 
2001) for the definitions of parallel type and series type, 
respectively, originally used in pseudo-amino acid com-
position. The feature vectors obtained in this category 
can contain considerable long-range or global sequence 
order information via the physicochemical properties of 
dinucleotides.

Pseudo‑dinucleotide composition (pPseNNC)

In parallel type of pseudo-dinucleotide composition (pPs-
eDNC), the users cannot only select the 22 built-in physi-
ochemical indices (Online Supporting Information S1), but 
also can upload their own indices to generate the pPseDNC 
feature vector.

Given an RNA sequence R (Eq. 1), the pPseDNC fea-
ture vector of R is defined:

where

where fk (k = 1, 2,…,16) is the normalized occurrence fre-
quency of dinucleotide in the RNA sequence; the param-
eter λ is an integer, representing the highest counted rank 
(or tier) of the correlation along an RNA sequence; w is 
the weight factor ranging from 0 to 1; θj (j = 1, 2,…,λ) is 
called the j-tier correlation factor reflecting the sequence-
order correlation between all the most contiguous dinucleo-
tides along an RNA sequence, which is defined:

(5)R =
[

d1 d2 . . . d16 d16+1 . . . d16+�

]T
,

(6)dk =







fk
�16

i=1 fi+w
�

�

j=1 θj
(1 ≤ k ≤ 16)

wθk−16
�16

i=1 fi+w
�

�

j=1 θj
(16+ 1 ≤ k ≤ 16+ �)

,

where the correlation function is given by

where µ is the number of physicochemical indices consid-
ered that are listed in the Online Supporting Information 
S1; Pu(RiRi + 1) represents the numerical value of the uth 
(u = 1, 2, . . . ,µ) physicochemical index for the dinucleo-
tide RiRi + 1 at the position i, and so forth.

Series type of pseudo‑dinucleotide composition (sPseDNC)

Series type of pseudo-dinucleotide composition is a variant 
of pPseDNC, which differs in the equations of calculating 
the correlation factors reflecting the sequence-order corre-
lation between all the most contiguous dinucleotides along 
an RNA sequence.

Given an RNA sequence R (Eq. 1), the sPseDNC feature 
vector of R is defined:

where

where fk (k = 1, 2, …, 16) is the normalized occurrence fre-
quency of dinucleotides in the RNA sequence; the param-
eter λ is an integer, representing the highest counted rank 
(or tier) of the correlation along an RNA sequence; w is the 
weight factor ranging from 0 to 1; � is the number of phys-
icochemical indices (Online Supporting Information S1); θj 
(j = 1, 2, …, λ) is called the j-tier correlation factor reflect-
ing the sequence-order correlation between all the most 
contiguous dinucleotides along an RNA sequence, which is 
defined:

(7)



























































θ1=
1

L−2

L−2
�

i=1

Θ(RiRi + 1, Ri + 1Ri + 2)

θ2 =
1

L−3

L−3
�

i=1

Θ(RiRi + 1, Ri + 2Ri + 3)

θ3=
1

L−4

L−4
�

i=1

Θ(RiRi + 1, Ri + 3Ri + 4)

. . . . . .

θ� =
1

L−1−�

L−1−�
�

i=1

Θ(RiRi + 1, Ri + �Ri + �+1)

(� < L)

(8)

Θ(RiRi + 1, RjRj+1)=
1

µ

µ
∑

u=1

[Pu(RRiRi + 1)− Pu(RjRj + 1)]
2
,

(9)R =

[

d1 d2 . . . d16 d16+1 . . . d16+� d16+�+1 . . . d16+�Λ

]T

,

(10)dk =







fk
�16

i=1 fi+w
�

�Λ
j=1 θj

(1 ≤ k ≤ 16)

wθk−16
�16

i=1 fi+w
�

�Λ
j=1 θj

(16+ 1 ≤ k ≤ 16+ �Λ)
,
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The correlation function is given by

where Pu(RiRi + 1) represents the numerical value of the 
uth (u = 1, 2, . . . , µ) physiochemical index for the dinu-
cleotide RiRi + 1 at position i, and so forth.

Structure composition

The third category is of structure composition that contains 
three modes (Xue et al. 2005; Liu et al. 2015b, d, e): (1) 
triplet, (2) pseudo-structure status composition (PseSSC), 
and (3) pseudo-distance structure status pair composition 
(PseDPC). The features in this category are derived by 
using the local and global sequence-pattern information 
via the computed secondary structures of RNA sequences 
(Lorenz et al. 2011). The feature vectors thus obtained have 
been successfully applied to identify microRNA precursors 
(Liu et al. 2015b, d, e).

Triplet

The Triplet (Xue et al. 2005) is an early approach to use 
the structure information of RNA sequences, and showed 
better performance for microRNA identification compared 
with other sequence-based methods.

Given an RNA sequence R (Eq. 1), formulating it 
according to its secondary structure derived from the 
Vienna RNA software package (Lorenz et al. 2011) 
(released 2.1.6), we have

where �1 denotes the structure status of R1, �2 the structure 
status of R2, and so forth.

(11)



















































































θ1=
1

L−3

L−3
�

i=1

J1i,i+1

θ2 =
1

L−3

L−3
�

i=1

J2i,i+1

. . . . . .

θΛ= 1
L−3

L−3
�

i=1

JΛi,i+1

. . . . . .

θ�Λ−1=
1

L−�−2

L−�−2
�

i=1

JΛ−1
i,i+�

θ�Λ= 1
L−�−2

L−�−2
�

i=1

JΛi,i+�

� < (L − 2)

(12)

{

Jui,i+m =Pu(RiRi + 1) · Pu(Ri+mRi + m + 1)

u = 1, 2, . . . ,Λ; m= 1, 2, . . . , �; i= 1, 2, . . . , L − �− 2
,

(13)R = �1�2�3�4�5 . . . �L ,

In the predicted secondary structure, there are only 
two statuses for each nucleotide, paired or unpaired, indi-
cated by brackets “(“or”)” and dots “.”, respectively. The 
left bracket “(“ means that the paired nucleotide is located 
near the 5′-end and can be paired with another nucleotide 
at the 3′-end, which is indicated by a right bracket “)”. We 
do not distinguish these two situations and use “(“ for both 
situations. For any three adjacent nucleotides, there are 8 
(23) possible structure compositions: “(((”, “((.”, “(..”, “(.(”, 
“.((”, “.(.”, “..(” and “…”. Considering the middle nucleo-
tide among the 3 adjacent nucleotides, there are 32 (4 × 8) 
possible structure–sequence combinations, which we 
denote as fA("((("), fC("((("), etc.

Therefore, Triplet approach formulates a feature vector 
containing 32 (4 × 8) components as given by

where f  represents the normalized occurrence frequency of 
the structure–sequence compositions.

Pseudo‑structure status composition (PseSSC)

Given an RNA sequence R (Eq. 1), we can formulate its 
secondary structure as Eq. 13. They can be any of the 10 
structure statuses; i.e.,

where A, C, G, U represent the structure statuses of the four 
unpaired nucleobases, while A–U, U–A, G–C, C–G, G–U, 
U–G represent the structure statuses of the six paired bases.

The PseSSC approach formulates a feature vector con-
taining 10n + � components as given by

where

where fi(i = 1, 2, . . . , 10n) represents the normalized 
occurrence frequency of the structure status combination 
of n adjacent nucleobases, w is the weight factor used to 
adjust the effect of the correlation factors, and θj the j-tier 
sequence correlation factor given by

(14)

D =
[

fA(
′′
(((

′′
) fA(

′′
((.

′′
) . . . fA(

′′
. . .

′′
)

fC(
′′
(((

′′
) . . . fU(

′′
. . .

′′
)

]T
,

(15)
Ψi ∈ {A, C, G, U, A−U, U−A, G−C, C−G,

G−U, U−G} i = 1, 2, . . . ,L,

(16)R =
[

f ∗1 f ∗2 f ∗3 . . . f ∗10n f ∗
10n+1 . . . f ∗10n+�

]T
,

(17)f ∗ =











fu
�10n

i=1 fi+w
�

�

j=1 θj
(1 ≤ u ≤ 10n)

wθu−10n
�10n

i=1 fi+w
�

�

j=1 θj
(10n + 1 ≤ u ≤ 10n + �)

,
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where λ is an integer, representing the highest counted rank 
(or tier) of the structural correlation along an RNA chain; 
θi is the ith-tier correlation factor reflecting the structure-
order information between all the ith most contiguous 
bases along an RNA chain, and the correlation function 
�
(

�i,�j

)

 is given by

where F(�i) is the free energy of the structure status 
�i of the nucleobase at position i, and F(�j) is the free 
energy of the structure status �j of the nucleobase at 
position j.

Pseudo‑distance structure status pair composition 
(PseDPC)

Given an RNA sequence R (Eq. 1), its feature vector 
(Eq. 13) can also be formulated as follows. In order to cap-
ture the structure-order information of the RNA sequence 
R, a concept called the occurrences of “distance structure 
status pair” or just “distance-pair”, D

(

�i,�j |k
)

 has been 
proposed, as formulated by

where �i and �i can be any of the 10 structure statuses of 
an RNA chain R (cf. Eq. 17), and k (0 ≤ k ≤ L − 1) repre-
sents the value counted by the distance between structure 
statuses the distance between structure and �j along the 
RNA chain R. Suppose �i is A–U, �j is U–G, and k = 3, 
then D(A–U, U–G|3) means the structure status pair (A–U, 

(18)
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1

L − 1

L−1
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i=1

�(�i,�i+1)

θ2 =
1

L − 2

L−2
�

i=1

�(�i,�i+2)

θ3 =
1

L − 3

L−3
�

i=1

�(�i,�i+3)

. . . . . .

θ� =
1

L − �

L−�
�

i=1

�(�i,�i+�)

(� < L),

(19)�
(

�i,�j

)

=
[

F(�i)− F(�j)
]2

,

(20)











































D
�

�i,�j |0
�

if k = 0 then i = j

D
�

�i,�j |1
�

if k = 1

D
�

�i,�j |2
�

if k = 2

...
...

D
�

�i,�j |L − 1
�

if k = L − 1

U–G) with its two counterparts separated by two nucleo-
tides along the RNA chain R.

The approach PseDPC formulates a feature vector as 
below:

where

where θj is the j-tier sequence correlation factor computed 
by Eq. 18, w is the weight factor used to adjust the effect of 
the correlation factors, � = 10+ 100n, where n represents 
the maximum distance between two structure statuses, and 
fu is the occurrences of the distance-pairs D(Ѱi, Ѱj|k) cal-
culated by

Description of repRNA server

The repRNA web server has a simple user interface that 
consists of three input fields: (1) feature-vector mode selec-
tion, (2) parameter settings, and (3) sequence to be ana-
lyzed. Users should first select any one of the 11 feature 
vector modes listed in Table 1 according to their need, fol-
lowed by setting the corresponding parameters. The RNA 
sequences should be in FASTA format and they can be 
input by the way of either copying/pasting or uploading a 
file containing the sequences concerned. To see the input 
sequence format, click the Example button. The web server 
accepts as many as 50 input sequences for each submission.

After clicking the submit button, if your input contains any 
invalid stuff, an error message will be prompted; otherwise, 
you will see the output on the screen. The output generated 
by the repRNA server contains a parameter summery and 
a result section. The former lists all the selected parameters 
used for deriving the feature vectors; the latter shows the 
numerical feature vectors thus obtained for the correspond-
ing RNA sequences in the input. The feature vectors can be 
downloaded into a separate file suitable for downstream com-
putational analyses by various algorithms, such support vec-
tor machine, neural network, and covariant discriminant algo-
rithm. For all the 11 modes (Table 1), the resultant feature 

(21)[d1 d2 d3 . . . du . . . dΩ dΩ+1 dΩ+1 . . . dΩ+�
]T,

(22)du =











fu

1+w
�

�

j=1 θj
(1 ≤ u ≤ �)

wθu−�

1+w
�

�

j=1 θj
(�+ 1 ≤ u ≤ �+ �)

,

(23)
fu =
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D
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D
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if 10 + 100(n− 1) ≤ u ≤ 10 + 100n
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vectors can be visualized by an intuitive graphical representa-
tion called “heat map” to see the distributions of their feature 
values. For the three modes in the structure composition cat-
egory, the secondary structures of the input RNA sequences 
can also be visualized to see their structure characteristics.

Applications of repRNA

As demonstrated in a series of recent publications (see, 
e.g., Liu et al. 2014a; Dehzangi et al. 2015; Liu et al. 
2015g) in complying with the Chou’s 5-step rule (Chou 
2011), to establish a really useful statistical predictor for a 
biological system, one needs to consider the following five 
guidelines: (1) construct or select a valid benchmark data-
set to train and test the predictor; (2) formulate the statisti-
cal samples with an effective mathematical expression that 
can truly reflect their intrinsic correlation with the target to 
be predicted; (3) introduce or develop a powerful machine-
learning algorithm (or engine) to operate the prediction; (4) 
properly perform cross-validation tests to objectively evalu-
ate the anticipated accuracy of the model; (5) establish a 
user-friendly web server for the predictor that is accessible 
to the public.

Among the aforementioned five steps, the most dif-
ficult and time-consuming job is in the second step; i.e., 
how to find an effective digit feature vector to represent 
the RNA sequence concerned. Using the repRNA web 
server as presented in this article, we can easily generate 
all these desired feature vectors by just selecting different 
parameters. For example, in studying the identification of 
microRNA precursors (Liu et al. 2015c), the authors used 
the feature vectors of pseudo-structure status composition 
(PseSSC) to represent the RNA samples after spending a lot 
of time for mathematical derivations. In contrast, if using 
the current repRNA web server by selecting ‘PseSSC’ for 
the mode and n = 2, λ = 13, w = 0.5 for the parameters, 
we can immediately obtain the exactly same feature vec-
tors as used in Liu et al. (2015c), substantially expediting 
the process of developing a new method for analyzing RNA 
sequences. Therefore, the application values of repRNA are 
self-evident.

Conclusions

To our best knowledge, repRNA is so far the most flexible 
and comprehensive web server for generating the feature 
vectors based on the RNA sequence information alone. 
The performance and efficiency of these feature vectors 
have been validated by a series of publications (Xue et al. 
2005; Zhang et al. 2011; Wei et al. 2014; Liu et al. 2015c, 

d). Compared with the existing method, repRNA has the 
following advantages: (1) it contains a total of 14 modes 
for generating the features; (2) various built-in and user-
defined physicochemical properties can be used for the 
computation; (3) the resultant feature vectors and the sec-
ondary structures of the input RNA sequences can be visu-
alized. It is anticipated that repRNA will become a useful 
high-throughput tool, expediting analysis of uncharacter-
ized RNA sequences.
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