

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Effect of Zr^{4+} doping on the stabilization of ZnCo-mixed oxide spinel system and its catalytic activity towards N₂O decomposition

S.N. Basahel^a, I.H. Abd El-Maksod^a, B.M. Abu-Zied^b, M. Mokhtar^{a,*}

^a Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21569, Saudi Arabia ^b Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

A R T I C L E I N F O

Article history: Received 16 November 2009 Received in revised form 18 December 2009 Accepted 26 December 2009 Available online 4 January 2010

Keywords: Spinel Doping ZnCo₂O₄ Activation energy ESR N₂O decomposition

ABSTRACT

Cobalt–zinc hydroxycarbonate precursor with nominal Co/Zn atomic ratio of 2 and 0.05–0.15 mol% ZrO₂-doped precursors have been synthesized from their metal nitrate and sodium carbonate by coprecipitation route. $ZnCo_2O_4$ spinel oxide was formed during the precipitation process as complemented by FTIR. Decomposition of the Co/Zn precursor at 350 °C resulted in the formation of $ZnCo_2O_4$ as evidenced by XRD technique. Zr^{4+} -doped samples stabilized the $ZnCo_2O_4$ phase and suppressed the formation of ZnO phase at 550 and 750 °C. The highest surface areas (S_{BET}) were attained for the samples doped with 0.15 mol% ZrO₂. Activation energy of sintering derived from XRD and S_{BET} data was directly proportional to the dopant concentration. ESR results revealed that the addition of increased amounts of Zr^{4+} enhances the formation of Co^{2+} ions. The activity of the 350 and 750 °C calcined catalysts was tested for N₂O direct decomposition. The observed activities were related to the presence of Co^{2+} – Co^{3+} ion pairs which were enhanced by the addition of Zr^{4+} ions.

© 2009 Elsevier B.V. All rights reserved.

霐

ALLOYS AND COMPOUNDS