

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Kinetics of non-isothermal crystallization of ternary $Se_{80}Te_{20-x}Zn_x$ glasses

Anis Ahmad^a, Shamshad A. Khan^{b,c,*}, A.A. Al-Ghamdi^b, Faisal A. Al-Agel^b, Kirti Sinha^a, M. Zulfequar^d, M. Husain^d

^a Department of Physics, University of Lucknow, Lucknow, U.P. 226007, India

^b Department of Physics, Faculty of Science, King Abdul Aziz University, Jeddah 21589, Saudi Arabia

^c Department of Physics, St. Andrew's College, Gorakhpur, U.P. 273001, India

^d Department of Physics, Jamia Millia Islamia, New Delhi 110025, India

ARTICLE INFO

Article history: Received 4 November 2009 Received in revised form 24 February 2010 Accepted 2 March 2010 Available online 7 March 2010

PACS:

71.55.Jv 65.90.+i 67.80.Gb 73.61.Jc

Keywords: Chalcogenides Glass transition temperature Non-isothermal process Crystallization kinetics

ABSTRACT

The crystallization kinetics of $Se_{80}Te_{20-x}Zn_x$ with x = 0.5, 1.0, 1.5, 2.0 and 2.5 chalcogenide glasses were investigated using non-isothermal crystallization approach. The glass transition temperature (T_g) and crystallization temperature (T_c) of these glasses were determined using the differential scanning calorimeter at different heating rates. The dependence of T_g and T_c on the heating rate (β) has been used for the determination of the activation energy of crystallization (E_c) , the activation energy of structural relaxation (E_t) , crystallization enthalpy (ΔH_c) and the Avrami exponent (n). It was found that the enthalpy released is minimum at 2.5% of Zn, hence, the glass with 2.5% of Zn is most stable in the $Se_{80}Te_{20-x}Zn_x$ system. The crystallization kinetics for the glasses was studied by using the modified Kissinger and Ozawa equations.

© 2010 Elsevier B.V. All rights reserved.