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Three-Level Atom and Two Modes: The Ladder Configuration
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ABSTRACT. A model is presented to discuss the interaction between 2
modes and a 3-level atom in the cascade type. There is a detunning parame-
ter. The model is solved with the interaction terms in the Hamiltonian as-
sisted through functions of the photon no-s in the two modes. The probabil-
ity distribution functions are calculated and characteristic functions as well
as mean values for the photon no-s and their powers and the occupation
numbers in the atomic levels are computed. The multiphoton processes are
discussed by specifying the functions of the photon numbers.

Introduction

The problem of a 3-level atom that interacts with 2 modes has been given vigorous in-
vestigations recently! through a full quantum mechanical treatment. Most of the
investigations!'! treat the case of what is called the “A” type where the two lower
levels are connected to the upper level. The “V” type has also been studied recently!®]
where the upper two levels are connected to the lower level. As far as we are aware,
the “cascade” type has not been investigated generally apart from the special case of
a one-mode, equal energy spacing and two equal coupling constants studied by
Sukumar & Buck!®. In this article, we present a generalized model for the 3-level
atom and 2 modes in interaction. The three states of the atom have energies o, o,
and o, where @, > w, > ,. The interaction between levels 1 and 2 is affected by the
mode 1 of energy {2,, while the mode 2 of energy (2, connects the two levels 2 and 3.
The model presented here contains a detunning parameter, 4, i.e. the transitions are
not in exact resonance with the photons energies. The scheme for the interaction is
presented in Fig. 1. The interactions are assisted by the functions f, (#, , A,) and
f, (A, #,) of the photon-numbers 7, A, in the two modes. These functions are intro-
dzuced in a formal way. When multiphoton processes are discussed, these functions
are specified as we show later.
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Description of the System
The Hamiltonian for such a system can be written in the following form:
_ 33 2 At 2 + @
H = .51 0l + ,51 Qa4 + j =21 AGS, L R+RTS, ) »
where SaB are the generators of the U (3) group, see Li and Zhul",

and R‘. = 4, f, (A, A,) with f a real function of the photon number operators
(A, = a7 a,) of the two modes. The operators SaB and Ri are supposed to commute

with each other.

They satisfy the following equations :

R, A} =R, [Rt,n]=-R:,[S,8, =88 _¢,8,

af " pv- av
[Rl’ R-;] = (ﬁl + 1) ﬁ(ﬁl + 1’ ﬁz) - ﬁ]ff(ﬁl’ ﬁz) (2)

with a similar relation for [Rz, R;], where 4, and 47 are the boson operators that in-
troduce the mode i, and they satisfy [4, d;] =3,
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Under the condition

A= wj—ij—Qj j=1,2 3)
We find the following constants of motion
N =4 + 8§, and N, =#4,-8, 4)

Using these constants of motion, we find that the Hamiltonian (1) breaks up into the
following commuting quantities

H=C+D 5
where :

D=(w,-8)I+0Q N +0ON,
and :

C =4S, + 3 A5 ;R + RS, ) (5b)

j=1
They commute with each other and hence with H.

We look now for the evolution operator U(¢ , 0) which is written in the following
form :

U(t, 0) = exp (- iHt) = exp (- iDt) exp (- iCt) 6)

using the commutation properties of € and D!“>7], Once this operator is calculated,
the time evolution for any operator O can be computed through the formula

O@)) = U(t, 0) O(0) U* (¢, 0) )
with O* the hermitian conjugate of U.

It is observed that the term { exp (~ iDr) } gives only phase factors which are ir-
relevant to the expectation values that will be calculated later. The term
{ exp (- iCt) } is expressed in the following matrix form :

4 it

P sin p,t ]
2 .
e’ +ARAANR,-AR, o ARANR,
L sin w.t . iAo . sin ut
exp (- iCf) = e? < —i costp =, dnpt-i — AR,
‘ " -
sin o
a Y + Mt 2 42
AzR;Al)‘lR: N ”\2R2 e + )‘2R2A1)‘1R2 ®)

. &
where
iAt

A = % [cosp t - e’ + . sinpf] , (- =0,1,2)

- rr
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() Af"lf 3("1 sny) + A;f g(nl’ n,)n,

— 2
v, = Nnfin,n) + X, +1)f2(n, ,n, +1)
and
— )2 2 2
v, =Nn+1)fin, +1,n) + X, +1)fi(n,n,+1) (9¢)

We note here the differences between the form (8) in this case and the case of the “A
type” discussed by Li and Beil!! or the “V type” of Obada and Abdel Hafezl"l.

We suppose the density operator of the system p(¢) to be initially :

B(0) = b,(0) ®,(0) | (10)

which is the product of the density operator of the atomic system p ,(0) are the fields
P (0). For t > o the density operator for the fields () and the probability distribu-
tion function P(n, , n, , ¢) for finding n, photons in the ith mode are given by :

be(® =Tr,p(®) , P(n, ,my 1) = <ny,my|b,0)|ny . n, > (1)

Statistical Aspects

We turn our attention now to calculating these quantities in the general formalism
for the atom being in one of its states, then giving the time evolution for the photons
numbers expectation values and the occupation numbers for the atomic states.

A. Atom in Its Ground State of Energy

In this case the density operator p(0) and the probability distribution function P
are given by :

p0) =, (0) S, (12a)
and
PS(n, ,n,,0) = B, +1)f2 (n,+1,n)A(n,+1)
fAfn,+1,n,+1) |AFP@n +1,n +1)

sin? pt
2 2
+ A, + 1) fin, ,n, +1) I-‘-f P, ,n,+1)

iAr
+|le* +Anfin ,n)A]l PPn ,n) . (12b)

With P(n, , n,) standing for the probability distribution function for the fields at
timet = 0. .
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The characteristic functions x (8, , 8)) and X; (B) are defined by

x(8,,8) = . ,En exp (iBn, +iBn)P(n ,n,,t)

1 2
and

x(B) = . En‘ exp (ian) P(n, ,ny)

P}

From these fur}(ctions Ishe expectation value for any moment of the photon number in
any mode < n,! (1) n,2 (f) > can be easily calculated as the appropriate partial dif-
ferentiation.

In this case of the atom starting in its ground state, we find

X¥(B,,B) = 3 exp(iBn, +iBn) P(n,,n)[1+(%~1)An,f2

1%

sin? pyt Ty
(n],nz)—‘—bg—&lelz(eBl 2-1)

A, filn, n,—1) Agnsz(nl > 1)

x§B) = x§(B,0) , x§B) = x50, B (14b)

While the different expectation values for the photon no-s and their 2nd powers as
well as the occupation-no-s in the atomic levels, which are calculated from the con-
stants (4), are given by :

<n()>&=n - n2 ) P(n, n) Xn fYn ,n,-1) Xnfin ,n)|Af
1°72

<n()>¥ =h,- 3 P ,n) Anfin ,n)

L) 1

2 sin? gt
o+ T 2

0

A f¥n, ,n,-1) |A
and
<ni(t)>8 = - (<n () >% 7)-2 n‘E‘n‘ P(n, , n)) A’n? f?

2
(n,,n,—-1) )\inz X f% (n, ,n) |

<ni(t) >8 = m - (<n, (1) >5 n)-2 "‘2.‘,"‘ P(n, ,n,) Nnif2(n. n)



108 M.T. Abdelnasser and A.M. Abdel-Hafez

X [ Afn,f7(n, yn,—1) 1A f‘m'IPﬂ_uf
Fy
< n_ (1) nlf) :~§' = HI PR e — P(n, ,n,) A fn. .n)
‘ = B n .A & LSt ! s
sin? pyt

X [n Tz + (n, + "2_1))\?"11%(”1 s ny=1) IAOF]
0

While the atomic occupation numbers are given by
<$,0>f=n-<n@®>f

2, 2
2:’” P(n, , n) M, f1 (n, . ny— 1) Xn, £

ety

(n] » nz) |A0|2 (168)

<S> =<n@®>5-n,+1

n2 1

1- % P("1’"2)’\§"2f§("1’"2)[)\§"1%

sin? pgt
(nl ’ n2 - 1) ‘Aolz “2 ]
0

and
<§,>=1-<§,>-<5,> (16¢)
where @ is the initial expectation value of .

It is observed that the photons no-s in the two modes as well as the occupation no-s in
the 2 upper levels, do not exceed their initial values. This means that if the two modes
were initially in vacuum states the system never develops. Also, it is marked that the
quantities in (15) & (16) depend on periodic functions of the time, therefore, col-
lapses and revivals are expected as in the other typesl.

B. Atom Starts in Its Intermediate State of Energy (w,)
The initial form for the density operation is given by:
0" ©=5,03,

The probability distribution function is thus given by :
sin? .t

B" (n,, nyf) = A] (n, + l)ff(”1+1’"2)Ty2'P(”1+l’”z)
2
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2
Az sin” 1) P(n, , n,)

+ (cos’u t +
1
4;1.1

sin? pyt

+ A2, f2 (n,, n)) =% P(n,, n, - 1) (17b)
o

Using this function, the statistical quantities calculated above are given by the fol-

lowing formulae in this case

X" (B ,B) = . En’ exp (i Bn, + iBn,)

')

P(n, ,n)[1+ (e ™ -1) Xn, fin, , n)

+ 2= N, + 1) i,y + 1) St
. 2
Ky
in _ 5 in?
< nl(t) >A = nl - . En P(nl s nz) Afnl ff(nl 2 n2) EHT"’lt (19a)
1’72
“

<nO)>"=n+ I P, n) X, + ) f2(n, ,n, + 1)80 mt

'll ,"2 ,Lf
<m(t) > =R - (< n() >i"- n)-2 X P(n,n)
1772

§in gt

[Alnlfl (nl’nz) F__IJ
<n() >" = - (< ny) >i"- n) -2 n.?n. P(n, , n)

sin !
Hy

<m(t) nye) =" = nn, - ._.I‘\'.u_ Pin, . n,) |h;'.'r|.r.':j"; (. n)

[-"-_. (n, + ],'lJl"_, (n . n, 1)

sin? u,t
2 2
tAn(m, + 1) fo(n, ,n, + 1 X —5—
1

The atomic occupation numbers are obtained as follows :
<S$,0>,"=n@>"
sin? l‘qt

2 P(n1 yn) A2 nfl(n, n) ——
A
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< S, >Z" = < n1) >‘§" -7,

sin? I‘qt

S P ,n)A(n, +1)fi(n ,n,+1)

ny,ny 1
and < §,, > is calculated from (16.c) with < § | >, < Sy > given by (20a,b).

From these formulae it is noted that the mean no- of photons in the 2nd mode, and
the occupation numbers in the ground state (w,) and the upper (w,) levels are never
less than their initial values, while the mean photon number in mode 1 and occupa-
tion number in the originally occupied level (w,) never exceed their initial values.
Thus, if the two modes start from vacuum states mode 1, which connects the inter-
mediate state that was initially occupied with the upper level, stays in vacuum, and
also the upper level (of energy w,) stays unoccupied, while mode 2 has a mean value
photon no- that develops with time.

C. Atom Initially in Its Upper Level (w))

For this case, the initial value for the density operator is given by :

0 0) =6 ,(0)S,, (212)
While the probability distribution function is found to be

iAt

u o 2 2 2
Pi(n,,n,,0)=|e” +AN@n +1)fin+1,n)A, [ Phn, n)
o sin? p.l
+ AN, fin, ,n) —5—P(n,-1,n) P(n,-1,n)
+ Mn fAn, ,n,-1) )«gnz f2(n, ,n) |A0|2 P(n,-1,n,-1)

(21b)
The different statistical quantities are given by the following:
For the characteristic functions
X' (B, 8) = I exp(iBn +iBp)P(n ,n)[l+ i -1)
N(n. +1) fin, + 1, n)

sin? p.zt

+ (€1 B2 1) N(n, + 1) f2(n, + 1, 1)
2

2
M(ny, + 1) f3n, + 1,0, + 1A
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The mean values for the photon no-s are

u 2 2 sin? ‘th
<n()>} =n + nlz,"z P(n, ,n) Ai(n, + 1) fi(n, +1, n,) [

M

2
+ X, + )fin, +1,n,+1) A,

< n(l) >Z n, + "2?"1 P(n, ,n) Nn, + 1) fi(n, + 1,n)
Mn, +1,n,+1)|Af
<n(t) >4 = - (<n () >4-7)
+2 3 2 P(n, ,n) Xi(n, + 1)’ fi(n, + 1, 1)
o
sin? p,

; .
— + AYn, + 1) fin, + 1,n, + 1) 14, ]

<nXp) >4 = n - (<nft) >, - 1)

+2 3 P ,n)ANm +1)fin +1,n)
n

nz,

A, + 1)) f2n, +1,n,+1) A,

<n()n) >4 =nn, + "12"‘2 P(n, ,n) N(n, + 1)

sin? pyt

f%(n1 +1, n2) [n2 2
2

+ (n, + n, + ) AYn, + 1) fAn, +1,n,+1) Al ]

For the atomic occupation nos we have

I

<$,@H>=n-< n(H >3
sin? pt
1= 5 P, m)Xin, + D) Fmy + 1, m)
ny 2

+

2
N(n, + ) f2(n, +1,n,+ 1A

(24a)
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and

< 333(t) >§ =< nz(t) >Z - n,

3 P(n,n) N(n,+ 1) fin, +1,n)X(n, + 1)
Bysty

fAn, +1,n,+ 1) |Af (24b)

while < S, (1) >} is calculated from (16¢) with (24a, 24b) substituted for < S,,>and
<S$,>.

Itis seen from (23a, b) as well as < S, >} and < §,, > are never less than their in-
itial values. This means that if the atom is initially in this state, and even with vacuum
states for the two modes the system starts to develop. After some time t > 0 the other
energy levels are populated.

D. Atom in a General State

Let the atom be in a state which is a mixed state with probability p, for population
of the level w. Thus, the probability distribution function for the photons in the two
modes for this case is given by :

PAn(nl b4 nz ’ t) = 23 psP:(nl k4 n2 b t)
where P> = P&, P2 = P" and P* = P* given by (12b, 17b, 21b).

Multiphon Processes

We turn our attention now to the multiphoton processes. We show in what follows
that the model presented here can coupe with such processes. The Hamiltonian for
this type is given by :

3 2 2 A am?
H= ¥ oS+ 3 0 a4+ NS, am+a7s (26)

i=1 i=1 ji=1

This Hamiltonian can be transformed to the form of eq. (1) when we use
the generalized boson operators b (see: Katriel and Hummeri8! and references there
in) defined as follows :

1
e n; 2_ A
@ = /] (= m) ! J= e

with A, = bt b =[] =

which relates the operation with 7, to A,
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Using this transformation the Hamiltonian (26) takes the form

) (28)

-]

H= 2 ©S, + ImQbib, + i=21 )‘j(Si.i+ ll;jfj(ﬁ/) + f) 575/ 1

which is the same form of (1) but with the functions f; are functions of n_ only defined
by (27a). Under these transformations and with (27b) we find in this case that :

n! n,!
v.(n ,n = Az 1 + AZ 2
ol > 1) ' (n-m)! 2((”2"”2)!)
v(n, ,n) = y(n ,n, + m)
and
v(n,, n) =y +m ,n, +m) (29)

While for example for the ground state, we find that the probability of (12b) takes the
form :

(ny +m)! (n, + m,)!
n! n,!

’ =222 2
PAg(nl,nz,t)—AI/\Z( YIA)  P(n, + m, ,n, + m)

(n, + m,) _ sin? p¢t

! 2
Ilz ! My

2
+ A5 ( P(n n,+m,)

iAt !

5 , sl T
+[e” + AL = )AL Pl n) (30)

where the A's and u's are defined as before in (9a, b) with the v’s given by (29). With
this example in mind, we can find the rest of the quantities given before.

Thus, with the model presented here, the multiphoton processes are discussed.
The model contains detunning through the parameter A. When we write A = 0 and
f; = constants, with A, = A, and @, - w, = w, - w, the model goes to the model dis-
cussed by Sukumar and Buck!®l.

Discussion and Conclusions

In this article, we have presented a model for a 3-level atom in the “cascade” con-
figuration. The interaction term depends on functions of the photon numbers.
Under the condition (3) which introduces the parameter A, the Hamiltonian is
exactly solvable. We have obtained the characteristic functions and given the time
development for the expectation values of the photon numbers and the occupation
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numbers in the atomic levels. Also, the expectation values for n1 and n2 aswellasn n,
are given for the different initial states of the atom. From these quantities, bunchmg
and antibunching can be discussed for each mode through the functions

gt =(< n2(t) > = <n()>)(<n() > Y2, (i = 1, 2), especially their dependence
on A. With this model, one is capable of discussing multjphoton processes by specify-
ing the functions f(n, ; n,).
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