الانتقال الى المحتوى الأساسي

نزيه شجاع ضياءالدين العثمانى

Nanofabrication Technology in Bone Healing

KACST Funded
Synthesis and characterization of conductive nanocomposites (enhanced material) for nanoengineered bone tissue engineering

بحث مدعوم من مدينة الملك عبدالعزيز للعلوم والتقنية

تصميم مكونات موصلة للكهرباء متناهية الصغر من اجل العظام المصنوعة باستخدام النانو في الهندسة النسيجية

Researchers
PI, Prof Mohammed Asif Hussain, Electrical and Computer Engineering, Biomedical Option, KAU
Prof, Rabah W Aldhahri, Electrical and Computer Engineering, KAU
Nazeeh Sh Alothmany, Phd,
Electrical and Computer Engineering, Biomedical Option, KAU

Abstract

The presence of electrical potentials in mechanically loaded bone demonstrated in the late 1950s triggered the exploratory research into electrical stimulation for the treatment of damaged bone tissue. Various animal models have provided evidence that electrical stimulation enhances bone healing. While many research efforts have focused on understanding the influence of electric fields on bone formation in general, significantly less is known of the mechanisms of such influence on osteoblast proliferation and differentiation growing on relevant orthopedic biomaterials and relatively negligible efforts exist utilizing pertinent conductive biomaterial scaffolds for achieving global and uniform electric fields and the study of osteoblast response to such electric fields application. This proposal describes synthesis of conductive nanofiber using carbon nanotube and a biopolymer mixture as well as engineering of hydroxyapatite nanocomposite by carbon nanotube doping. Further the study describes a series of studies employing the electric field effects to investigate the proliferation and differentiation of osteosarcoma cell lines within the scaffold of such nanomaterials for engineered bone tissue constructs. Specifically, we will 1a) synthesize composite nanofibers from candidate biopolymer and nanotubes using electrospinning method; 1b) Prepare hydroxyapatite-carbon nanotube nanocomposite by taking different ratios of hydroxyapatite and carbon nanotube; 2)Characterize the nanocomposite scaffold/ nanofibers in terms of electrical conductivity and measure mechanical properties; 3) Determine Cell response to electric fields cultured on the conductive nanocomposites using the osteosarcoma cell lines (MG63 and SAOS-2) and 4) Perform quantification of gene expression relevant to osteoblast proliferation and differentiation. The study will establish infrastructure for Nano-Electronics pursuits including nanofabrication and processing of nanofibers on one hand and generate enhanced nanomaterial for biomedical use on the other hand. The study will also provide valuable insight into the molecular level properties of osteoblast proliferation and differentiation as well as their interactions with enhanced conductive nanocomposites biomaterials. The knowledge gained from these studies will lead to an increased understanding of the mechanisms of bone regeneration in response to electrical stimulation through conductive biomaterials, and will develop a framework for bone regeneration study from embryonic or adult stem cells for example mesenchymal stem cells (hMSCs) leading to new methods of treatment for orthopedic medical problems.

الملخص

ادى اكتشاف فرق جهد كهربائي في العظام في نهاية الخمسينيات لتشجيع الباحثين على البحث في نتائج استخدام التيار الكهربائي من اجل علاج العظام المكسورة. واثبتت عدد من التجارب التي اجريت على الحيوانات بأن استخدام التيار الكهربائي يساعد في علاج العظام المكسورة. معظم التجارب التي اجريت في هذا المجال ركزت على دراسة تاثير الكهرباء على العظام ولكن مازال الكثير من المعلومات حول نتائج استخدام الكهرباء في العظام المصنعة  .
يهدف هذا البحث لوصف عملية تصنيع الياف عظمية من انابيب الكربون النانوية اضافة لدراسة عملية هيدروكسي اباتايت بنفس انابيب الكربون النانوية. كما يهدف البحث لوصف كيفية تاثير الكهرباء على عملية الالتحام في الالياف العظمية المصنعة بتقنية النانو. سنقوم في البحث 1)- تصميم الياف نانوية من البوليمر باستخدام الدوران الكهربائي. 2)- تحضير انابيب نانوية من هيدروكسيات الكربون 3)-تحديد خصائص المستحضرات الكهربائية والميكانيكية. 4)-تحديد ردة فعلا الخلايا المصنعة للمجال الكهربائي. 5)-تكوين خارطة جينية مرتبطة بالتفاعل الاوستيوبلاستي .
 ستوفر الدراسة الهيكلة اللازمة للالكترونيات المتناهية الصغر من اجل تصميم مواد نانوية يمكن استخدامها في الهندسة الطبية وستوفر الدراسة ايضا فكرة عن الخصائص الجزيئية للتفاعل بين الالياف المصنعة والطبيعية وهو الأمر الذي سيوفر المعرفة حول دور الكهرباء في شفاء العظام من الكسور كما ستوفر الدراسة معلوماتا اساسية لازمة لاستخدام الخلايا الجذعية في تصميم الاعضاء والاطراف

Objectives

Characterizing the effect of electric fields on osteoblast proliferation and differentiation is an important step in understanding the mechanisms of bone healing either without biomaterials as in cell therapy or in combination with biopolymers or bioceramics as in bone/cartilage construct development in tissue engineering pursuits. Different kinds of cells are known to respond to electric fields, yet relatively few studies are reported on electric field effect on osteoblasts or bone forming cells in combination with relevant biomaterials. No study exists that uses engineered conductive bioceramics viz., hydroxyapatite to explore response of osteoblasts in terms of its proliferation and differentiation. The goals of the studies proposed herein are to elucidate the proliferation and differentiation of osteosarcoma cell lines (MG63 and SAOS-2) as response to electric fields and to characterize these changes by utilizing standard biochemical tests, cell death/viability assays and by quantification of gene expression using micro array techniques. These studies will increase understanding of cell- conductive biomaterial interaction as well as cell response to applied electric field and further methods of engineering conductive nanocomposites using carbon nanotube and hydroxyapatite in the treatment of orthopedic ailments. Specifically, we will:
  1. Synthesis of conductive nanocomposite biomaterial and/or nanofibers with Carbon nanotubes: Prepare hydroxyapatite-carbon nanotube nanocomposite by taking different ratios of hydroxyapatite and carbon nanotube and/or prepare nanofibers from polymer and CNT mixture using eletrospinning method
  1. Characterization of the nanocomposite biomaterials/nanofibers: Characterize scaffold in terms of electrical conductivity and measure mechanical properties
  1. Biological characterization: Perform quantification of gene expression relevant to osteoblast proliferation and differentiation.
  1. Biomedical Application: Determine Cell response to electric fields cultured on the conductive nanocomposite using the osteosarcoma cell lines (MG63 and SAOS-2)

أرسل الصفحة لصديق إطبع هذه الصفحة أبلغ عن خطأ في الصفحة أضف رابط الصفحة لموقعك
آخر تحديث 12/19/2011 8:24:46 AM